Redis持久化AOF
背景
Redis主要包含2中持久化方式,即RDB和AOF,本文主要介绍AOF,RDB见本站的另一篇博客Redis持久化RDB
什么是AOF
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。 AOF默认是关闭的,需要修改redis.conf
配置文件来开启AOF:
java
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
java
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
配置项对比
配置项 | 刷盘时机 | 优点 | 缺点 |
---|---|---|---|
Always | 同步刷盘 | 可靠性高,几乎不丢数据 | 性能影响大 |
everysec | 每秒刷盘 | 性能适中 | 最多丢失1秒数据 |
no | 操作系统控制 | 性能最好 | 可靠性较差,可能丢失大量数据 |
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof
命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
java
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
重写原理,如何实现重写
AOF文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再rename),redis4.0版本后的重写,是指上就是把rdb 的快照,以二级制的形式附在新的aof头部,作为已有的历史数据,替换掉原来的流水账操作。 关键命令no-appendfsync-on-rewrite
- 如果
no-appendfsync-on-rewrite=yes
,不写入aof文件只写入缓存,用户请求不会阻塞,但是在这段时间如果宕机会丢失这段时间的缓存数据。(降低数据安全性,提高性能) - 如果
no-appendfsync-on-rewrite=no
, 还是会把数据往磁盘里刷,但是遇到重写操作,可能会发生阻塞。(数据安全,但是性能降低)
重写流程
bgrewriteaof
触发重写,判断是否当前有bgsave
或bgrewriteaof
在运行,如果有,则等待该命令结束后再继续执行。- 主进程
fork
出子进程执行重写操作,保证主进程不会阻塞。 - 子进程遍历redis内存中数据到临时文件,客户端的写请求同时写入
aof_buf
缓冲区和aof_rewrite_buf
重写缓冲区保证原AOF文件完整以及新AOF文件生成期间的新的数据修改动作不会丢失。 - (1).子进程写完新的AOF文件后,向主进程发信号,父进程更新统计信息。(2).主进程把aof_rewrite_buf中的数据写入到新的AOF文件。
- 使用新的AOF文件覆盖旧的AOF文件,完成AOF重写。 如图所示
AOF持久化流程
- 客户端的请求写命令会被append追加到AOF缓冲区内;
- AOF缓冲区根据AOF持久化策略[always,everysec,no]将操作sync同步到磁盘的AOF文件中;
- AOF文件大小超过重写策略或手动重写时,会对AOF文件rewrite重写,压缩AOF文件容量;
- Redis服务重启时,会重新load加载AOF文件中的写操作达到数据恢复的目的;
总结-与RDB对比
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
RDB | AOF | |
---|---|---|
持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 |
数据完整性 | 不完整,两次备份之间会丢失 | 相对完整,取决于刷盘策略 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 很快 | 慢 |
数据恢复优先级 | 低,因为数据完整性不如AOF | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 | 低,主要是磁盘IO资源 但AOF重写时会占用大量CPU和内存资源 |
使用场景 | 可以容忍数分钟的数据丢失,追求更快的启动速度 | 对数据安全性要求较高常见 |